top of page

List of publications

1. Phd Thesis Abstract.

You need to have IISc email to access softcopy or visit library but here is abstract below.

We give a brief introduction to atomic physics and the motivation behind our experiments in the first chapter. The electron's electric dipole moment is an interesting quantity which is yet to be measured. In the 3rd Chapter, we use the technique of chopped nonlinear magneto-optic rotation (NMOR) in a room temperature Cs vapor cell to measure the permanent electric dipole moment (EDM) in the atom. The cell has paraffin coating on the walls to increase the relaxation time. The signature of the EDM is a shift in the Larmor precession frequency correlated with the application of an E field. We analyze errors in the technique, and show that the main source of systematic error is the appearance of a longitudinal magnetic field when an electric field is applied. This error can be eliminated by doing measurements on the two ground hyperfine levels. Using an E field of 2.6 kV/cm, we place an upper limit on the electron EDM of $ 2.9 \times 10^{-22} $ e-cm with 95\% confidence. This limit can be increased by 7 orders-of-magnitude---and brought below the current best experimental value. We give future directions for how this may be achieved. In chapter 4, we examine the Hanle effect for linear and circularly polarized light for different ground states and we find opposite behavior in the transmission signal. In one case, it shifts from enhanced transmission to enhanced absorption and vice-versa in the other case. 
In Chapter 5, we study the transmission spectrum at different temperatures and device a way to find the number density. We then verify the Clausius-Clapyron equation and also find the Latent heat of Vaporization of Cesium. Finally, we wrap up with conclusions and future directions.

bottom of page